The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability.

نویسندگان

  • C Vilela
  • B Linz
  • C Rodrigues-Pousada
  • J E McCarthy
چکیده

Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-mediated modulation of post-termination events on the 5'-untranslated region (5'-UTR) directs differential control not only of translation but also of mRNA decay. Translational control is defined by two types of uORF function. The YAP1 -type uORF allows scanning 40S subunits to proceed via leaky scanning and re-initiation to the major ORF, whereas the YAP2 -type acts to block ribosomal scanning by promoting efficient termination. At the same time, the YAP2 uORFs define a new type of mRNA destabilizing element. Both post-termination ribosome scanning behaviour and mRNA decay are influenced by the coding sequence and mRNA context of the respective uORFs, including downstream elements. Our data indicate that release of post-termination ribosomes promotes largely upf -independent accelerated decay. It follows that translational termination on the 5'-UTR of a mature, non-aberrant yeast mRNA can trigger destabilization via a different pathway to that used to rid the cell of mRNAs containing premature stop codons. This route of control of non-aberrant mRNA decay influences the stress response in yeast. It is also potentially relevant to expression of the sizable number of eukaryotic mRNAs that are now recognized to contain uORFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Mitochondrial-Related Transcriptional Levels of mitochondrial transcription factor A, Nuclear respiratory factor 1 and cytochrome c oxidase subunit 1 Genes in Single Human Oocytes at Various Stages of the Oocyte Maturation

Background: The aim of the current study was to assess the mRNA levels of two mitochondria-related genes, including nuclear-encoded NRF1 (nuclear respiratory factor 1), mitochondrial transcription factor A (TFAM), and mitochondrial-encoded cytochrome c oxidase subunit 1 (MT-CO1) genes in various stages of the human oocyte maturation. Methods: Oocytes were obtained from nine infertile women wit...

متن کامل

Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.

A novel form of post-transcriptional control is described. The 5' untranslated region (5'UTR) of the Saccharomyces cerevisiae gene encoding the AP1-like transcription factor Yap2 contains two upstream open reading frames (uORF1 and uORF2). The YAP2-type of uORF functions as a cis-acting element that attenuates gene expression at the level of mRNA turnover via termination-dependent decay. Releas...

متن کامل

طرح تحلیل تعدادی از mRNA های مادری مخصوص اووسیت در جنین تک سلولی موش

Introduction & Objective: During oogenesis, mRNA is actively transcribed and accumulated in the growing oocytes, and then the transcription stops. Transcription silencing will continue during early embryonic stages at least up to the time when the embryonic genome is activated. Thus the earliest stages of embryogenesis in mammals and other animal species are depending on stored maternal RNAs an...

متن کامل

Nonsense-mediated mRNA decay among coagulation factor genes

Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...

متن کامل

The Expression of T-Helper Associated Transcription Factors and Cytokine Genes in Pre-Eclampsia

Background: Pre-eclampsia (PE) is known as a main factor contributing to fetomaternal mortality, which might affect 2-8% of all pregnancies after the twentieth week of gestation. The balance of T helper subsets is essential to sustain a normal pregnancy and preventing fetomaternal complications. Objective: To investigate differences in the levels of transcription factors and cytokine gene e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 1998